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1. [5] Determine the remainder when 1 + 2 + · · · + 2014 is divided by 2012.

Answer: 1009 We wish to find the value of 1 + 2 + · · · + 2014 modulo 2012. We have

1 + 2 + · · · + 2014 =
1

2
(2014)(2015) = 1007 · 2015 ≡ 1007 · 3 = 3021 ≡ 1009 (mod 2012).

Remark: Note that, since 2 is not relatively prime to 2012, that this is not the same as

1

2
(2)(3) ≡ 3 (mod 2012).

2. [5] Let ABCD be a rectangle with AB = 6 and BC = 4. Let E be the point on BC with BE = 3,
and let F be the point on segment AE such that F lies halfway between the segments AB and CD. If
G is the point of intersection of DF and BC, find BG.

Answer: 1 Note that since F is a point halfway between AB and AC, the diagram must be
symmetric about the line through F parallel to AB. Hence, G must be the reflection of E across the
midpoint of BC. Therefore, BG = EC = 1.

3. [5] Let x be a real number such that 2x = 3. Determine the value of 43x+2.

Answer: 11664 We have

43x+2 = 43x · 42 = (22)3x · 16 = 26x · 16 = (2x)6 · 16 = 36 · 16 = 11664.

4. [6] Determine which of the following numbers is smallest in value: 54
√

3, 144, 108
√

6 − 108
√

2.

Answer: 54
√

3 We can first compare 54
√

3 and 144. Note that
√

3 < 2 and 144

54
= 8

3
> 2. Hence,

54
√

3 is less. Now, we wish to compare this to 108
√

6− 108
√

2. This is equivalent to comparing
√

3 to
2(
√

6−
√

2). We claim that
√

3 < 2(
√

6−
√

2). To prove this, square both sides to get 3 < 4(8− 4
√

3)

or
√

3 < 29

16
which is true because 29

2

162 = 841

256
> 3. We can reverse this sequence of squarings because,

at each step, we make sure that both our values are positive after taking the square root. Hence, 54
√

3
is the smallest.

5. [6] Charlie folds an 17

2
-inch by 11-inch piece of paper in half twice, each time along a straight line

parallel to one of the paper’s edges. What is the smallest possible perimeter of the piece after two such
folds?

Answer: 39

2
Note that a piece of paper is folded in half, one pair of opposite sides is preserved

and the other pair is halved. Hence, the net effect on the perimeter is to decrease it by one of the side
lengths. Hence, the original perimeter is 2

(
17

2

)
+ 2 · 11 = 39 and by considering the cases of folding

twice along one edge or folding once along each edge, one can see that this perimeter can be decreased
by at most 11 + 17

2
= 39

2
. Hence, the minimal perimeter is 39

2
.

6. [6] To survive the coming Cambridge winter, Chim Tu doesn’t wear one T-shirt, but instead wears up
to FOUR T-shirts, all in different colors. An outfit consists of three or more T-shirts, put on one on
top of the other in some order, such that two outfits are distinct if the sets of T-shirts used are different
or the sets of T-shirts used are the same but the order in which they are worn is different. Given that
Chim Tu changes his outfit every three days, and otherwise never wears the same outfit twice, how
many days of winter can Chim Tu survive? (Needless to say, he only has four t-shirts.)

Guts Round



Answer: 144 We note that there are 4 choices for Chim Tu’s innermost T-shirt, 3 choices for the
next, and 2 choices for the next. At this point, he has exactly 1 T-shirt left, and 2 choices: either he
puts that one on as well or he discards it. Thus, he has a total of 4 × 3 × 2 × 2 = 48 outfits, and can
survive for 48 × 3 = 144 days.

7. [7] How many ordered triples of positive integers (a, b, c) are there for which a4b2c = 54000?

Answer: 16 We note that 54000 = 24 ×33 ×53. Hence, we must have a = 2a13a25a3 , b = 2b13b25b3 ,
c = 2c13c25c3 . We look at each prime factor individually:

• 4a1 + 2b1 + c1 = 4 gives 4 solutions: (1, 0, 0), (0, 2, 0), (0, 1, 2), (0, 0, 4)

• 4a2 + 2b2 + c2 = 3 and 4a3 + 2b3 + c3 = 3 each give 2 solutions: (0, 1, 1), (0, 1, 3).

Hence, we have a total of 4 × 2 × 2 = 16 solutions.

8. [7] Let a, b, c be not necessarily distinct integers between 1 and 2011, inclusive. Find the smallest

possible value of
ab + c

a + b + c
.

Answer: 2

3
We have

ab + c

a + b + c
=

ab − a − b

a + b + c
+ 1.

We note that ab−a−b
a+b+c

< 0 ⇔ (a− 1)(b− 1) < 1, which only occurs when either a = 1 or b = 1. Without
loss of generality, let a = 1. Then, we have a value of

−1

b + c + a
+ 1.

We see that this is minimized when b and c are also minimized (so b = c = 1), for a value of 2

3
.

9. [7] Unit circle Ω has points X,Y,Z on its circumference so that XY Z is an equilateral triangle. Let
W be a point other than X in the plane such that triangle WY Z is also equilateral. Determine the
area of the region inside triangle WY Z that lies outside circle Ω.

Answer: 3
√

3−π
3

Let O be the center of the circle. Then, we note that since ∠WY Z = 60◦ = ∠Y XZ,

that Y W is tangent to Ω. Similarly, WZ is tangent to Ω. Now, we note that the circular segment
corresponding to Y Z is equal to 1

3
the area of Ω less the area of triangle OY Z. Hence, our total area

is

[WY Z] − 1

3
[Ω] + [Y OZ] =

3
√

3

4
− 1

3
π +

√
3

4
=

3
√

3 − π

3
.

X

Y

Z

WO
1

Ω

10. [8] Determine the number of integers D such that whenever a and b are both real numbers with
−1/4 < a, b < 1/4, then |a2 − Db2| < 1.

Answer: 32 We have

−1 < a2 − Db2 < 1 ⇒ a2 − 1

b2
< D <

a2 + 1

b2
.
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We have
a2 − 1

b2
is maximal at −15 =

.252 − 1

.252
and

a2 + 1

b2
is minimal at

02 + 1

.252
= 16. However, since

we cannot have a, b = ±.25, checking border cases of -15 and 16 shows that both of these values are
possible for D. Hence, −15 ≤ D ≤ 16, so there are 32 possible values of D.

11. [8] For positive integers m,n, let gcd(m,n) denote the largest positive integer that is a factor of both
m and n. Compute

91∑

n=1

gcd(n, 91).

Answer: 325 Since 91 = 7 × 13, we see that the possible values of gcd(n, 91) are 1, 7, 13, 91. For
1 ≤ n ≤ 91, there is only one value of n such that gcd(n, 91) = 91. Then, we see that there are 12
values of n for which gcd(n, 91) = 7 (namely, multiples of 7 other than 91), 6 values of n for which
gcd(n, 91) = 13 (the multiples of 13 other than 91), and 91 − 1 − 6 − 12 = 72 values of n for which
gcd(n, 91) = 1. Hence, our answer is 1 × 91 + 12 × 7 + 6 × 13 + 72 × 1 = 325.

12. [8] Joe has written 5 questions of different difficulties for a test with problems numbered 1 though 5.
He wants to make sure that problem i is harder than problem j whenever i− j ≥ 3. In how many ways
can he order the problems for his test?

Answer: 25 We will write pi > pj for integers i, j when the ith problem is harder than the jth
problem. For the problem conditions to be true, we must have p4 > p1, p5 > p2, and p5 > p1.

Then, out of 5! = 120 total orderings, we see that in half of them satisfy p4 > p1 and half satisfy
p5 > p2, and that these two events occur independently. Hence, there are

(
1

2

) (
1

2

)
(120) = 30 orderings

which satisfy the first two conditions. Then, we see that there are 4!

2!2!
= 6 orderings of p1, p2, p4, p5

which work; of these, only p4 > p1 > p5 > p2 violates the condition p5 > p1. Consequently, we have
5

6
(30) = 25 good problem orderings.

13. [8] Tac is dressing his cat to go outside. He has four indistinguishable socks, four indistinguishable
shoes, and 4 indistinguishable show-shoes. In a hurry, Tac randomly pulls pieces of clothing out of a
door and tries to put them on a random one of his cat’s legs; however, Tac never tries to put more
than one of each type of clothing on each leg of his cat. What is the probability that, after Tac is done,
the snow-shoe on each of his cat’s legs is on top of the shoe, which is on top of the sock?

Answer: 1

1296
On each leg, Tac’s cat will get a shoe, a sock, and a snow-shoe in a random order.

Thus, the probability that they will be put on in order for any given leg is 1

3!
= 1

6
. Thus, the probability

that this will occur for all 4 legs is
(

1

6

)4
= 1

1296
.

14. [8] Let AMOL be a quadrilateral with AM = 10, MO = 11, and OL = 12. Given that the perpen-
dicular bisectors of sides AM and OL intersect at the midpoint of segment AO, find the length of side
LA.

Answer:
√

77 Let D be the midpoint of AM and E be the midpoint of AO. Then, we note that
ADE ∼ AMO, so M is a right angle. Similarly, L is a right angle. Consequently, we get that

AO2 = OM2 + AM2 ⇒ AL =
√

AO2 − OL2 =
√

112 + 102 − 122 =
√

77.
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15. [8] For positive integers n, let L(n) be the largest factor of n other than n itself. Determine the number
of ordered pairs of composite positive integers (m,n) for which L(m)L(n) = 80.

Answer: 12 Let x be an integer, and let px be the smallest prime factor of x. Then, if L(a) = x,
we note that we must have a = px for some prime p ≤ px. (Otherwise, if p > px, then px

px

> x. If p is

composite, then kx > x for some factor k of x.)

So we have:

• L(a) = 2, 4, 8, 10, 16, 20, 40 ⇒ 1 value for a

• L(a) = 5 ⇒ 3 values for a

Hence, we note that, since m and n are composite, we cannot have L(m) = 1 or L(n) = 1, so the
possible pairs (L(m), L(n)) are (2, 40), (4, 20), (5, 16), (8, 10) and vice-versa.

We add the number of choices for each pair, and double since m and n are interchangeable, to get
2(1 × 1 + 1 × 1 + 3 × 1 + 1 × 1) = 12 possible ordered pairs (m,n).

16. [10] A small fish is holding 17 cards, labeled 1 through 17, which he shuffles into a random order.
Then, he notices that although the cards are not currently sorted in ascending order, he can sort them
into ascending order by removing one card and putting it back in a different position (at the beginning,
between some two cards, or at the end). In how many possible orders could his cards currently be?

Answer: 256 Instead of looking at moves which put the cards in order, we start with the cards
in order and consider possible starting positions by backtracking one move: each of 17 cards can be
moved to 16 new places. But moving card k between card k + 1 and card k + 2 is equivalent to
moving card k + 1 between card k − 1 and card k. We note that these are the only possible pairs of
moves which produce the same result, so we have double counted 16 moves. Thus, we have a total of
17 × 16 − 16 = 256 possible initial positions.

17. [10] For a positive integer n, let p(n) denote the product of the positive integer factors of n. Determine
the number of factors n of 2310 for which p(n) is a perfect square.

Answer: 27 Note that 2310 = 2 × 3 × 5 × 7 × 11. In general, we see that if n has d(n) positive

integer factors, then p(n) = n
d

2 since we can pair factors (d, n
d
) which multiply to n. As a result, p(n)

is a square if and only if n is a square or d is a multiple of 4.

Thus, because 2310 is not divisible by the square of any prime, we claim that for integers n dividing
2310, p(n) is even if and only if n is not prime. Clearly, p(n) is simply equal to n when n is prime,
and p(1) = 1, so it suffices to check the case when n is composite. Suppose that n = p1p2 · · · pk, where
k > 1 and {p1, . . . , pk} is some subset of {2, 3, 5, 7, 11}. Then, we see that n has 2k factors, and that
4 | 2k, so p(n) is a square.
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Since 2310 has 25 = 32 factors, five of which are prime, 27 of them have p(n) even.

18. [10] Consider a cube ABCDEFGH, where ABCD and EFGH are faces, and segments AE,BF,CG,DH
are edges of the cube. Let P be the center of face EFGH, and let O be the center of the cube. Given
that AG = 1, determine the area of triangle AOP .

Answer:
√

2

24
From AG = 1, we get that AE = 1√

3
and AC =

√
2√
3
. We note that triangle AOP is

located in the plane of rectangle ACGE. Since OP ‖ CG and O is halway between AC and EG, we

get that [AOP ] = 1

8
[ACGE]. Hence, [AOP ] = 1

8
( 1√

3
)(

√
2√
3
) =

√
2

24
.

A

B

C

D

E

F

G

H

O P

1
√

3

√

2
√

3

19. [10] Let ABCD be a rectangle with AB = 3 and BC = 7. Let W be a point on segment AB such that
AW = 1. Let X,Y,Z be points on segments BC,CD,DA, respectively, so that quadrilateral WXY Z
is a rectangle, and BX < XC. Determine the length of segment BX.

Answer: 7−
√

41

2
We note that

∠Y XC = 90 − ∠WXB = ∠XWB = 90 − ∠AWZ = ∠AZW

gives us that XY C ∼= ZWA and XY Z ∼ WXB. Consequently, we get that Y C = AW = 1. From
XY Z ∼ WXB, we get that

BX

BW
=

CY

CX
⇒ BX

2
=

1

7 − BX

from which we get

BX2 − 7BX + 2 = 0 ⇒ BX =
7 −

√
41

2

(since we have BX < CX).

A

B C

D

W

X

Y

Z

Guts Round



20. [10] The UEFA Champions League playoffs is a 16-team soccer tournament in which Spanish teams
always win against non-Spanish teams. In each of 4 rounds, each remaining team is randomly paired
against one other team; the winner advances to the next round, and the loser is permanently knocked
out of the tournament. If 3 of the 16 teams are Spanish, what is the probability that there are 2
Spanish teams in the final round?

Answer: 4

5
We note that the probability there are not two Spanish teams in the final two is the

probability that the 3 of them have already competed against each other in previous rounds. Note
that the random pairings in each round is equivalent, by the final round, to dividing the 16 into two
groups of 8 and taking a winner from each. Now, letting the Spanish teams be A, B, and C, once we
fix the group in which A is contained, the probability that B is contained in this group as well is 7/15.
Likewise, the probability that C will be in the same group as A and B is now 6/14. Our answer is thus

1 −
(

7

15

)(
6

14

)
=

4

5
.

21. [10] Let P (x) = x4 + 2x3 − 13x2 − 14x + 24 be a polynomial with roots r1, r2, r3, r4. Let Q be the
quartic polynomial with roots r2

1, r
2
2, r

2
3, r

2
4, such that the coefficient of the x4 term of Q is 1. Simplify

the quotient Q(x2)/P (x), leaving your answer in terms of x. (You may assume that x is not equal to
any of r1, r2, r3, r4).

Answer: x4 − 2x3 − 13x2 + 14x + 24 We note that we must have

Q(x) = (x − r2
1)(x − r2

2)(x − r2
3)(x − r2

4) ⇒ Q(x2) = (x2 − r2
1)(x

2 − r2
2)(x

2 − r2
3)(x

2 − r2
4)

. Since P (x) = (x − r1)(x − r2)(x − r3)(x − r4), we get that

Q(x2)/P (x) = (x + r1)(x + r2)(x + r3)(x + r4).

Thus, Q(x2)/P (x) = (−1)4P (−x) = P (−x), so it follows that

Q(x2)/P (x) = x4 − 2x3 − 13x2 + 14x + 24.

22. [12] Let ABC be a triangle with AB = 23, BC = 24, and CA = 27. Let D be the point on segment
AC such that the incircles of triangles BAD and BCD are tangent. Determine the ratio CD/DA.

Answer: 14

13
Let X,Z,E be the points of tangency of the incircle of ABD to AB,BD,DA respec-

tively. Let Y,Z, F be the points of tangency of the incircle of CBD to CB,BD,DC respectively. We
note that

CB + BD + DC = CY + Y B + BZ + ZD + DF + FC = 2(CY ) + 2(BY ) + 2(DF )2(24) + 2(DF )

by equal tangents, and that similarly

AB + BD + DA = 2(23) + 2(DE).

Since DE = DZ = DF by equal tangents, we can subtract the equations above to get that

CB + CD − AB − AD = 2(24) − 24(23) ⇒ CD − DA = 1.

Since we know that CD + DA = 27, we get that CD = 14, DA = 13, so the desired ratio is 14

13
.
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23. [12] Let N = 5AB37C2, where A,B,C are digits between 0 and 9, inclusive, and N is a 7-digit positive
integer. If N is divisible by 792, determine all possible ordered triples (A,B,C).

Answer: (0, 5, 5), (4, 5, 1), (6, 4, 9) First, note that 792 = 23 × 32 × 11. So we get that

8 | N ⇒ 8 | 7C2 ⇒ 8 | 10C + 6 ⇒ C = 1, 5, 9

9 | N ⇒ 9 | 5 + A + B + 3 + 7 + C + 2 ⇒ A + B + C = 1, 10, 19

11 | N ⇒ 11 | 5 − A + B − 3 + 7 − C + 2 ⇒ −A + B − C = −11, 0

Adding the last two equations, and noting that they sum to 2B, which must be even, we get that
B = 4, 5.

Checking values of C we get possible triplets of (0, 5, 5), (4, 5, 1), and (6, 4, 9).

24. [12] Three not necessarily distinct positive integers between 1 and 99, inclusive, are written in a row
on a blackboard. Then, the numbers, without including any leading zeros, are concatenated to form a
new integer N . For example, if the integers written, in order, are 25, 6, and 12, then N = 25612 (and
not N = 250612). Determine the number of possible values of N .

Answer: 825957 We will divide this into cases based on the number of digits of N .

• Case 1: 6 digits. Then each of the three numbers must have two digits, so we have 90 choices for
each. So we have a total of 903 = 729000 possibilities.

• Case 2: 5 digits. Then, exactly one of the three numbers is between 1 and 9, inclusive. We
consider cases on the presence of 0s in N .

– No 0s. Then, we have 9 choices for each digit, for a total of 95 = 59049 choices.

– One 0. Then, the 0 can be the second, third, fourth, or fifth digit, and 9 choices for each of
the other 4 digits. Then, we have a total of 4 × 94 = 26244 choices.

– Two 0s. Then, there must be at least one digit between them and they cannot be in the first
digit, giving us 3 choices for the positioning of the 0s. Then, we have a total of 3 ∗ 93 = 2187
choices.

So we have a total of 59049 + 26244 + 2187 = 87480 choices in this case.

• Case 3: 4 digits. Again, we casework on the presence of 0s.

– No 0s. Then, we have 94 = 6561 choices.

– One 0. Then, the 0 can go in the second, third, or fourth digit, so we have 3 × 93 = 2187
choices.

So we have a total of 6561 + 2187 = 8748 choices in this case.

• Case 4: 3 digits. Then, we cannot have any 0s, so we have a total of 93 = 729 choices.

Hence, we have a total of 729000 + 87480 + 8748 + 729 = 825957 choices for N .
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25. [12] Let XY Z be an equilateral triangle, and let K,L,M be points on sides XY, Y Z,ZX, respectively,
such that XK/KY = B, Y L/LZ = 1/C, and ZM/MX = 1. Determine the ratio of the area of
triangle KLM to the area of triangle XY Z.

Answer: 1

5
First, we note that

[KLM ] = [XY Z] − [XKM ] − [Y LK] − [ZML].

Then, note that

[XKM ] =
XK

XY
· XM

XZ
· [XY Z] =

B

B + 1
· 1

2
· [XY Z]

[Y LK] =
Y L

Y Z
· Y K

Y X
· [XY Z] =

1

C + 1
· 1

B + 1
· [XY Z]

[ZML] =
ZM

ZX
· ZL

ZY
· [XY Z] =

1

2
· 1

C + 1
· [XY Z]

Consequently,

A =
[KLM ]

[XY Z]

= 1 − B

B + 1
· 1

2
− 1

C + 1
· 1

B + 1
− C

C + 1
· 1

2

=
B + C

(B + 1)(C + 1)(2)

If we solve our system of equations for A,B,C, we get that A = 1

5
.

X

Y

Z

K

L

M1

2

1

2

2

3

1

3

4

5

1

5

26. [12] Determine the positive real value of x for which

√
2 + AC + 2Cx +

√
AC − 2 + 2Ax =

√
2(A + C)x + 2AC.

Answer: 4 Note that if we have
√

a +
√

b =
√

a + b for non-negative reals a, b, then squaring gives

us that 2
√

ab = 0, so that either a = 0 or b = 0.

Now, note that
(2 + AC + 2Cx) + (AC − 2 + 2Ax) = (2(A + C)x + 2AC).
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Consequently, either (2 + AC + 2Cx) or (AC − 2 + 2Ax) must be equal to 0. However, we observe
from the problems that both A, C, and x must be non-negative, so (2 + AC + 2Cx) > 0. As a result,
we know that AC − 2 + 2Ax = 0, or that

B = x =
2 − AC

2A
.

If we solve our system of equations for A,B,C, we get that B = 4.

27. [12] In-Young generates a string of B zeroes and ones using the following method:

• First, she flips a fair coin. If it lands heads, her first digit will be a 0, and if it lands tails, her
first digit will be a 1.

• For each subsequent bit, she flips an unfair coin, which lands heads with probability A. If the
coin lands heads, she writes down the number (zero or one) different from previous digit, while if
the coin lands tails, she writes down the previous digit again.

What is the expected value of the number of zeroes in her string?

Answer: 2 Since each digit is dependent on the previous, and the first digit is random, we note that
the probability that In Young obtains a particular string is the same probability as that she obtains
the inverse string (i.e. that where the positions of the 0s and 1s are swapped). Consequently, we would
expect that half of her digits are 0s, so that

C =
B

2
.

If we solve our system of equations for A,B,C, we get that C = 2.

Solution of the system of equations for Problems 25, 26, 27:

Thus, we have the three equations

A =
B + C

(B + 1)(C + 1)(2)
, B =

2 − AC

2A
, C =

B

2

Plugging the last equation into the first two results in

A =
3B

(B + 1)(B + 2)(2)
⇒ B =

4 − AB

4A

Rearranging the second equation gives

4AB = 4 − AB ⇒ AB =
4

5
⇒ A =

4

5B

Then, plugging this into the first equation gives

4

5B
=

3B

(B + 1)(B + 2)(2)

⇒ 15B2 = 8B2 + 24B + 16

⇒ 7B2 − 24B − 16 = 0

⇒ (7B + 4)(B − 4) = 0

Since we know that B > 0, we get that B = 4. Plugging this back in gives A = 1

5
and C = 2.
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28. [14] Determine the value of
2011∑

k=1

k − 1

k!(2011 − k)!
.

Answer:
2009(22010)+1

2011!
We note that

(2011!)
2011∑

k=1

k − 1

k!(2011 − k)!
=

2011∑

k=1

(2011!)(k − 1)

k!(2011 − k)!

=

2011∑

k=1

k(2011)!

k!(2011 − k)!
−

2011∑

k=1

2011!

k!(2011 − k)!

=

2011∑

k=1

k

(
2011

k

)
−

2011∑

k=1

(
2011

k

)

= (2011)(22010) − (22011 − 1)

Thus, we get an answer of
(
2009

(
22010

)
+ 1

)
/(2011!).

Note: To compute the last two sums, observe that

2011∑

k=0

(
2011

k

)
= (1 + 1)2011 = 22011

by the Binomial Theorem, and that

2011∑

k=0

k

(
2011

k

)
=

1

2

(
2011∑

k=0

k

(
2011

k

)
+

2011∑

k=0

(2011 − k)

(
2011

2011 − k

))
= 2011

(
22010

)
.

29. [14] Let ABC be a triangle with AB = 4, BC = 8, and CA = 5. Let M be the midpoint of BC, and
let D be the point on the circumcircle of ABC so that segment AD intersects the interior of ABC,
and ∠BAD = ∠CAM . Let AD intersect side BC at X. Compute the ratio AX/AD.

Answer: 9

41
Let E be the intersection of AM with the circumcircle of ABC. We note that, by

equal angles ADC ∼ ABM , so that

AD = AC(
AB

AM
) =

20

AM
.

Using the law of cosines on ABC, we get that

cos B =
42 + 82 − 52

2(4)(8)
=

55

64
.

Then, using the law of cosines on ABM, we get that

AM =
√

42 + 42 − 2(4)(4) cos B =
3√
2
⇒ AD =

20
√

2

3
.

Applying Power of a Point on M ,

(AM)(ME) = (BM)(MC) ⇒ ME =
16
√

2

3
⇒ AE =

41
√

2

6
.

Then, we note that AXB ∼ ACE, so that

AX = AB(
AC

AE
) =

60
√

2

41
⇒ AX

AD
=

9

41
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30. [14] Let S be a set of consecutive positive integers such that for any integer n in S, the sum of the
digits of n is not a multiple of 11. Determine the largest possible number of elements of S.

Answer: 38 We claim that the answer is 38. This can be achieved by taking the smallest integer
in the set to be 999981. Then, our sums of digits of the integers in the set are

45, . . . , 53, 45, . . . , 54, 1, . . . , 10, 2, . . . , 10,

none of which are divisible by 11.

Suppose now that we can find a larger set S: then we can then take a 39-element subset of S which
has the same property. Note that this implies that there are consecutive integers a − 1, a, a + 1 for
which 10b, . . . , 10b + 9 are all in S for b = a− 1, a, a + 1. Now, let 10a have sum of digits N . Then, the
sums of digits of 10a + 1, 10a + 2, . . . , 10a + 9 are N + 1, N + 2, . . . , N + 9, respectively, and it follows
that n ≡ 1 (mod 11).

If the tens digit of 10a is not 9, note that 10(a + 1) + 9 has sum of digits N + 10, which is divisible by
11, a contradiction. On the other hand, if the tens digit of 10a is 9, the sum of digits of 10(a − 1) is
N − 1, which is also divisible by 11. Thus, S has at most 38 elements.

Motivation: We want to focus on subsets of S of the form {10a, . . . , 10a + 9}, since the sum of digits
goes up by 1 most of the time. If the tens digit of 10a is anything other than 0 or 9, we see that S can
at most contain the integers between 10a−8 and 10a+18, inclusive. However, we can attempt to make
10(a− 1) + 9 have sum of digits congruent to N + 9 modulo 11, as to be able to add as many integers
to the beginning as possible, which can be achieved by making 10(a − 1) + 9 end in the appropriate
number of nines. We see that we want to take 10(a − 1) + 9 = 999999 so that the sum of digits upon
adding 1 goes down by 53 ≡ 9 (mod 11), giving the example we constructed previously.

31. [17] Each square in a 3 × 10 grid is colored black or white. Let N be the number of ways this can be
done in such a way that no five squares in an ‘X’ configuration (as shown by the black squares below)
are all white or all black. Determine

√
N .
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Answer: 25636 Note that we may label half of the cells in our board the number 0 and the other
half 1, in such a way that squares labeled 0 are adjacent only to squares labeled 1 and vice versa. In
other words, we make this labeling in a ’checkerboard’ pattern. Since cells in an ’X’ formation are all
labeled with the same number, the number of ways to color the cells labeled 0 is

√
N , and the same is

true of coloring the cells labeled 1.

Let a2n be the number of ways to color the squares labeled 0 in a 3 by 2n grid without a monochromatic
’X’ formation; we want to find a10. Without loss of generality, let the rightmost column of our grid
have two cells labeled 0. Let b2n be the number of such colorings on a 3 by 2n grid which do not have
two black squares in the rightmost column and do not contain a monochromatic ’X’, which we note is
also the number of such colorings which do not have two white squares in the rightmost column.

Now, we will establish a recursion on a2n and b2n.We have two cases:

• Case 1: All three squares in the last two columns are the same color. For a2n, there are 2 ways to
color these last three squares, and for b2n there is 1 way to color them. Then, we see that there
are b2n−2 ways to color the remaining 2n − 2 columns.

• Case 2: The last three squares are not all the same color. For a2n, there are 6 ways to color the
last three squares, and for b2n there are 5 ways to color them. Then, there are a2n−2 ways to
color the remaining 2n − 2 columns.

Consequently, we get the recursions a2n = 6a2n−2 + 2b2n−2 and b2n = 5a2n−2 + b2n−2. From the first
equation, we get that b2n = 1

2
a2n+2 − 3a2n. Plugging this in to the second equations results in the

recurion
1

2
a2n+2 − 3a2n = 5a2n−2 +

1

2
a2n − 3a2n−2 ⇒ a2n+2 = 7a2n + 4a2n−2.

Now, we can easily see that a0 = 1 and a2 = 23 = 8, so we compute a10 = 25636.

32. [17] Find all real numbers x satisfying

x9 +
9

8
x6 +

27

64
x3 − x +

219

512
= 0.

Answer: 1

2
, −1±

√
13

4
Note that we can re-write the given equation as

3

√
x − 3

8
= x3 +

3

8
.

Furthermore, the functions of x on either side, we see, are inverses of each other and increasing. Let

f(x) = 3

√
x − 3

8
. Suppose that f(x) = y = f−1(x). Then, f(y) = x. However, if x < y, we have

f(x) > f(y), contradicting the fact that f is increasing, and similarly, if y < x, we have f(x) < f(y),
again a contradiction. Therefore, if f(x) = f−1(x) and both are increasing functions in x, we require
f(x) = x. This gives the cubic

x3 − x +
3

8
= 0 →

(
x − 1

2

)(
x2 +

1

2
x − 3

4

)
= 0,

giving x =
1

2
,
−1 ±

√
13

4
.

33. [17] Let ABC be a triangle with AB = 5, BC = 8, and CA = 7. Let Γ be a circle internally tangent
to the circumcircle of ABC at A which is also tangent to segment BC. Γ intersects AB and AC at
points D and E, respectively. Determine the length of segment DE.

Answer: 40

9

Guts Round



A

B C

D
E

O

MX

Y

Z

P

First, note that a homothety h centered at A takes Γ to the circumcircle of ABC, D to B and E to C,
since the two circles are tangent. As a result, we have DE ‖ BC. Now, let P be the center of Γ and
O be the circumcenter of ABC: by the homothety h, we have DE/BC = AP/AO.

Let Γ be tangent to BC at X, and let ray
−−→
AX meet the circumcircle of ABC at Y . Note that Y is the

image of X under h. Furthermore, h takes BC to the tangent line l to the circumcircle of ABC at Y ,
and since BC ‖ l, we must have that Y is the midpoint of arc B̂C. Therefore, AX bisects ∠BAC.

Now, let Z be the foot of the altitude from A to BC, and let M be the midpoint of BC, so that
OM ⊥ BC. Note that AP/AO = ZX/ZM . Now, letting BC = a = 8, CA = b = 7, and AB = c = 5,
we compute

BZ = c cos B =
c2 + a2 − b2

2a
=

5

2

by the Law of Cosines,

BX =
ac

b + c
=

10

3

by the Angle Bisector Theorem, and
BM = 4.

To finish,

DE =
(AP )(BC)

AO
=

(ZX)(BC)

ZM
=

(5/6)(8)

(3/2)
=

40

9
.

34. [20] The integer 843301 is prime. The primorial of a prime number p, denoted p#, is defined to be
the product of all prime numbers less than or equal to p. Determine the number of digits in 843301#.
Your score will be

max

{⌊
60

(
1

3
−

∣∣∣∣ln
(

A

d

)∣∣∣∣
)⌋

, 0

}
,

where A is your answer and d is the actual answer.

Answer: 365851 Remark: 843301# − 1 is the largest known prime number of the form p# − 1,
where p is prime.

35. [20] Let G be the number of Google hits of “guts round” at 10:31PM on October 31, 2011. Let B be
the number of Bing hits of “guts round” at the same time. Determine B/G. Your score will be

max

(
0,

⌊
20

(
1 − 20|a − k|

k

)⌋)
,
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where k is the actual answer and a is your answer.

Answer: .82721 The number of Google hits was 7350. The number of Bing hits was 6080. The
answer is thus 6080/7350 = .82721.

36. [20] Order any subset of the following twentieth century mathematical achievements chronologically,
from earliest to most recent. If you correctly place at least six of the events in order, your score will be
2(n − 5), where n is the number of events in your sequence; otherwise, your score will be zero. Note:
if you order any number of events with one error, your score will be zero.

A). Axioms for Set Theory published by Zermelo

B). Category Theory introduced by Mac Lane and Eilenberg

C). Collatz Conjecture proposed

D). Erdos number defined by Goffman

E). First United States delegation sent to International Mathematical Olympiad

F). Four Color Theorem proven with computer assistance by Appel and Haken

G). Harvard-MIT Math Tournament founded

H). Hierarchy of grammars described by Chomsky

I). Hilbert Problems stated

J). Incompleteness Theorems published by Godel

K). Million dollar prize for Millennium Problems offered by Clay Mathematics Institute

L). Minimum number of shuffles needed to randomize a deck of cards established by Diaconis

M). Nash Equilibrium introduced in doctoral dissertation

N). Proof of Fermat’s Last Theorem completed by Wiles

O). Quicksort algorithm invented by Hoare

Write your answer as a list of letters, without any commas or parentheses.

Answer: IAJCBMHODEFLNGK The dates are as follows:

A). Axioms for Set Theory published by Zermelo 1908

B). Category Theory introduced by Mac Lane and Eilenberg 1942-1945

C). Collatz Conjecture proposed 1937

D). Erdos number defined by Goffman 1969

E). First United States delegation sent to International Mathematical Olympiad 1974

F). Four Color Theorem proven with computer assistance by Appel and Haken 1976

G). Harvard-MIT Math Tournament founded 1998

H). Hierarchy of grammars described by Chomsky 1956

I). Hilbert Problems stated 1900

J). Incompleteness Theorems published by Godel 1931

K). Million dollar prize for Millennium Problems offered by Clay Mathematics Institute 2000

L). Minimum number of shuffles needed to randomize a deck of cards established by Diaconis 1992

M). Nash Equilibrium introduced in doctoral dissertation 1950

N). Proof of Fermat’s Last Theorem completed by Wiles 1994

O). Quicksort algorithm invented by Hoare 1960

so the answer is IAJCBMHODEFLNGK.
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