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1. [2] Find the number of positive integers x less than 100 for which

3x + 5x + 7x + 11x + 13x + 17x + 19x

is prime.

Answer: 0 We claim that our integer is divisible by 3 for all positive integers x. Indeed, we have

3x + 5x + 7x + 11x + 13x + 17x + 19x ≡ (0)x + (−1)x + (1)x + (−1)x + (1)x + (−1)x + (1)x

≡ 3[(1)x + (−1)x]

≡ 0 (mod 3).

It is clear that for all x ≥ 1, our integer is strictly greater than 3, so it will always be composite,
making our answer 0.

2. [4] Determine the set of all real numbers p for which the polynomial Q(x) = x3 + px2 − px − 1 has
three distinct real roots.

Answer: p > 1 and p < −3 First, we note that

x3 + px2 − px − 1 = (x − 1)(x2 + (p + 1)x + 1).

Hence, x2 + (p + 1)x + 1 has two distinct roots. Consequently, the discriminant of this equation must
be positive, so (p + 1)2 − 4 > 0, so either p > 1 or p < −3. However, the problem specifies that the
quadratic must have distinct roots (since the original cubic has distinct roots), so to finish, we need to
check that 1 is not a double root–we will do this by checking that 1 is not a root of x2 + (p + 1)x + 1
for any value p in our range. But this is clear, since 1 + (p + 1) + 1 = 0 ⇒ p = −3, which is not in the
aforementioned range. Thus, our answer is all p satisfying p > 1 or p < −3.

3. [6] Find the sum of the coefficients of the polynomial P (x) = x4 − 29x3 + ax2 + bx + c, given that
P (5) = 11, P (11) = 17, and P (17) = 23.

Answer: -3193 Define Q(x) = P (x)− x− 6 = x4 − 29x3 + ax2 + (b− 1)x + (c− 6) and notice that
Q(5) = Q(11) = Q(17) = 0. Q(x) has degree 4 and by Vieta’s Formulas the sum of its roots is 29, so
its last root is 29 − 17 − 11 − 5 = −4, giving us Q(x) = (x − 5)(x − 11)(x − 17)(x + 4). This means
that P (1) = Q(1) + 7 = (−4)(−10)(−16)(5) + 7 = −3200 + 7 = −3193.

4. [7] Determine the number of quadratic polynomials P (x) = p1x
2 + p2x − p3, where p1, p2, p3 are not

necessarily distinct (positive) prime numbers less than 50, whose roots are distinct rational numbers.

Answer: 31 The existence of distinct rational roots means that the given quadratic splits into linear
factors. Then, since p1, p3 are both prime, we get that the following are the only possible factorizations:

• (p1x − p3)(x + 1) ⇒ p2 = p1 − p3

• (p1x + p3)(x − 1) ⇒ p2 = −p1 + p3

• (p1x − 1)(x + p3) ⇒ p2 = p1p3 − 1

• (p1x + 1)(x − p3) ⇒ p2 = −p1p3 + 1

In the first case, observe that since p2 + p3 = p1, we have p1 > 2, so p1 is odd and exactly one of p2, p3

is equal to 2. Thus, we get a solutions for every pair of twin primes below 50, which we enumerate
to be (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), giving 12 solutions in total. Similarly, the second
case gives p1 + p2 = p3, for another 12 solutions.
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In the third case, if p1, p3 are both odd, then p2 is even and thus equal to 2. However, this gives
p1p3 = 3, which is impossible. Therefore, at least one of p1, p3 is equal to 2. If p1 = 2, we get
p2 = 2p3 − 1, which we find has 4 solutions: (p2, p3) = (3, 2), (5, 3), (13, 7), (37, 19). Similarly, there are
four solutions with p3 = 2. However, we count the solution (p1, p2, p3) = (2, 3, 2) twice, so we have a
total of 7 solutions in this case. Finally, in the last case

p2 = −p1p3 + 1 < −(2)(2) + 1 < 0,

so there are no solutions. Hence, we have a total of 12 + 12 + 7 = 31 solutions.

5. [3] Sixteen wooden Cs are placed in a 4-by-4 grid, all with the same orientation, and each is to be
colored either red or blue. A quadrant operation on the grid consists of choosing one of the four
two-by-two subgrids of Cs found at the corners of the grid and moving each C in the subgrid to the
adjacent square in the subgrid that is 90 degrees away in the clockwise direction, without changing
the orientation of the C. Given that two colorings are the considered same if and only if one can be
obtained from the other by a series of quadrant operations, determine the number of distinct colorings
of the Cs.
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Answer: 1296 For each quadrant, we have three distinct cases based on the number of Cs in each
color:

• Case 1: all four the same color: 2 configurations (all red or all blue)

• Case 2: 3 of one color, 1 of the other: 2 configurations (three red or three blue)

• Case 3: 2 of each color: 2 configurations (red squares adjacent or opposite)

Thus, since there are 4 quadrants, there are a total of (2 + 2 + 2)4 = 1296 possible grids.

6. [5] Ten Cs are written in a row. Some Cs are upper-case and some are lower-case, and each is written
in one of two colors, green and yellow. It is given that there is at least one lower-case C, at least one
green C, and at least one C that is both upper-case and yellow. Furthermore, no lower-case C can be
followed by an upper-case C, and no yellow C can be followed by a green C. In how many ways can
the Cs be written?

Answer: 36 By the conditions of the problem, we must pick some point in the line where the green
Cs transition to yellow, and some point where the upper-case Cs transition to lower-case. We see that
the first transition must occur before the second, and that they cannot occur on the same C. Hence,

the answer is

(
9

2

)
= 36.

7. [7] Julia is learning how to write the letter C. She has 6 differently-colored crayons, and wants to write
Cc Cc Cc Cc Cc. In how many ways can she write the ten Cs, in such a way that each upper case C
is a different color, each lower case C is a different color, and in each pair the upper case C and lower
case C are different colors?
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Answer: 222480 Suppose Julia writes Cc a sixth time, coloring the upper-case C with the unique
color different from that of the first five upper-case Cs, and doing the same with the lower-case C (note:
we allow the sixth upper-case C and lower-case c to be the same color). Note that because the colors
on the last Cc are forced, and any forced coloring of them is admissible, our problem is equivalent to
coloring these six pairs.

There are 6! ways for Julia to color the upper-case Cs. We have two cases for coloring the lower-case
Cs:

• Case 1: the last pair of Cs use two different colors. In this case, all six lower-case Cs have a
different color to their associated upper-case C, and in addition the six lower-case Cs all use each
color exactly once. In other words, we have a derangement* of the six colors, based on the colors
of the upper-case Cs. We calculate D6 = 265 ways to color the lower-case Cs here.

• Case 2: the last pair of Cs have both Cs the same color. Then, the color of the last lower-case
C is forced, and with the other five Cs we, in a similar way to before, have a derangement of the
remaining five colors based on the colors of the first five lower-case Cs, so we have D5 = 44 ways
to finish the coloring.

Our answer is thus 720(265 + 44) = 222480.

*A derangement is a permutation π of the set {1, 2, . . . , n} such that π(k) 6= k for all k, i.e. there
are no fixed points of the permutation. To calculate Dn, the number of derangements of an n-element
set, we can use an inclusion-exclusion argument. There are n! ways to permute the elements of the set.

Now, we subtract the number of permutations with at least one fixed point, which is

(
n

1

)
(n−1)! =

n!

1!
,

since we choose a fixed point, then permute the other n − 1 elements. Correcting for overcounting,

we add back the number of permutations with at least two fixed points, which is

(
n

2

)
(n − 2)! =

n!

2!
.

Continuing in this fashion by use of the principle of inclusion-exclusion, we get

Dn = n!

(
1

0!
− 1

1!
+

1

2!
+ · · · + (−1)n

n!

)
.

8. [4] Let G,A1, A2, A3, A4, B1, B2, B3, B4, B5 be ten points on a circle such that GA1A2A3A4 is a regular
pentagon and GB1B2B3B4B5 is a regular hexagon, and B1 lies on minor arc GA1. Let B5B3 intersect
B1A2 at G1, and let B5A3 intersect GB3 at G2. Determine the degree measure of ∠GG2G1.

Answer: 12◦
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Note that GB3 is a diameter of the circle. As a result, A2, A3 are symmetric with respect to GB3, as
are B1, B5. Therefore, B1A2 and B5A3 intersect along line GB3, so in fact, B1, A2, G1, G2 are collinear.
We now have

∠GG2G1 = ∠GG2B1 =
ĜB1 − B̂3A2

2
=

60◦ − 36◦

2
= 12◦.

Team Round



9. [4] Let ABC be a triangle with AB = 9, BC = 10, and CA = 17. Let B′ be the reflection of the point
B over the line CA. Let G be the centroid of triangle ABC, and let G′ be the centroid of triangle
AB′C. Determine the length of segment GG′.

Answer: 48
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Let M be the midpoint of AC. For any triangle, we know that the centroid is located 2/3 of the way
from the vertex, so we have MG/MB = MG′/MB′ = 1/3, and it follows that MGG′ ∼ MBB′. Thus,
GG′ = BB′/3 . However, note that BB′ is twice the altitude to AC in triangle ABC. To finish, we
calculate the area of ABC in two different ways. By Heron’s Formula, we have

[ABC] =
√

18(18 − 9)(18 − 10)(18 − 17) = 36,

and we also have

[ABC] = 1

4
BB′ · AC = 17

4
(BB′),

from which it follows that GG′ = BB′/3 = 48/17.

10. [8] Let G1G2G3 be a triangle with G1G2 = 7, G2G3 = 13, and G3G1 = 15. Let G4 be a point

outside triangle G1G2G3 so that ray
−−−→
G1G4 cuts through the interior of the triangle, G3G4 = G4G2,

and ∠G3G1G4 = 30◦. Let G3G4 and G1G2 meet at G5. Determine the length of segment G2G5.

Answer: 169
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We first show that quadrilateral G1G2G4G3 is cyclic. Note that by the law of cosines,
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cos ∠G2G1G3 =
72 + 152 − 132

2 · 7 · 15
=

1

2
,

so ∠G2G1G3 = 60◦. However, we know that ∠G3G1G4 = 30◦, so G1G4 is an angle bisector. Now, let

G1G4 intersect the circumcircle of triangle G1G2G3 at X. Then, the minor arcs Ĝ2X and Ĝ3X are
subtended by the equal angles ∠G2G1X and ∠G3G1X, implying that G2X = G3X, i.e. X is on the
perpendicular bisector of G2G3, l. Similarly, since G4G2 = G4G3, G4 lies on l. However, since l and
G1G4 are distinct (in particular, G1 lies on G1G4 but not l), we in fact have X = G4, so G1G2G4G3

is cyclic.

We now have G5G2G4 ∼ G5G3G1 since G1G2G4G3 is cyclic. Now, we have ∠G4G3G2 = ∠G4G1G2 =
30◦, and we may now compute G2G4 = G4G3 = 13/

√
3. Let G5G2 = x and G5G4 = y. Now, from

G5G4G2 ∼ G5G1G3, we have:

x

y + 13/
√

3
=

13/
√

3

15
=

y

x + 7
.

Equating the first and second expressions and cross-multiplying, we get

y +
13
√

3

3
=

15
√

3x

13
.

Now, equating the first and third expressions and and substituting gives

(
15
√

3x

13
− 13

√
3

3

) (
15
√

3x

13

)
= x(x + 7).

Upon dividing both sides by x, we obtain a linear equation from which we can solve to get x = 169/23.
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